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Abstract. Molecular dynamics is used in combination with density functional theory

to determine the thermal transport properties of the single-layer hexagonal boron

nitride (SL h-BN) from ab initio calculations. Within this approach, the possible

anisotropy in the thermal conductivity of SL h-BN was studied. For samples with finite

length (of the order of 20 nm), we find a significant dependence of the conductivity on

the transport direction. We make a direct comparison of the results obtained for 2D

layers and for nanoribbons with similar size, and show that, as a consequence of edge

scattering, the ribbon geometry induces a significant decrease in the conductivity, and

produces a strong change in the anisotropy. For the zigzag and armchair transport

directions, the dependence of the thermal conductivity on the system length was also

obtained, as well as its value in the 2D-bulk limit case. A very small anisotropy was

found for the limit of long samples, in contrast with the finite length ones. This

is explained analyzing the dependence of the average square group velocities on the

transport direction and the phonon frequency.

Keywords: DFT, Molecular Dynamics, Anisotropy thermal conductivity, Single-layer
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1. Introduction

The novel properties of carbon-based honeycomb structures [1, 2, 3, 4, 5] have stimulated

strong interest in isomorphic two-dimensional (2D) materials such as hexagonal boron

nitride (h-BN). The strong covalent bond between B and N atoms by sp2 hybridization

[6] and its honeycomb atomic structure result in some of its physical properties being

similar to those of graphene, like e.g.: strong mechanical properties, high thermal
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stability and superior thermal conductivity [7, 8, 9, 10, 11]. The fact that h-BN is

an insulator, makes it an almost ideal insulating and dielectric layer for graphene based

electronics. As a matter of fact, the feasibility of graphene/h-BN devices with improved

electrical properties in comparison to the graphene on amorphous SiO2 substrate

counterpart has been demonstrated [12]. Moreover, the high thermal conductivity of

h-BN makes it perfect for the thermal management in nanodevices where efficient heat

dissipation is a key factor [13].

Understanding the lattice thermal transport properties of single layer (SL) h-BN

is crucial for the design of novel nanodevices as well as for improving our fundamental

insight into the behavior of phonon transport in 2D layered structures [14, 15, 16].

Recently, thermal conductivities in few-layer h-BN samples were measured obtaining:

360 W/mK for the 11-layer h-BN sample [17], 227-280 W/mK for the 9-layer sample

[10], 250 W/mK for 5-layers [17] and 484 W/mK for 2-layers [18]. In contrast, the

highest recorded thermal conductivity of bulk h-BN is around 400 W/mK [19] at room

temperature. Despite sharing similar lattice structure with graphene, the obtained

thermal conductivities of h-BN are significantly lower than for their carbon counterparts.

From the theoretical point of view, the thermal conductivity of h-BN has been

extensively studied, but most of the studies were focused on nanoribbon structures.

Thermal conductivity in two-dimensional layers was computed using model potentials

from the Einstein relations, obtaining 460 W/mK [20], Green Kubo formalism 400

W/mK [21] and solving the linearized Boltzmann transport equation (BTE) 780-810

W/mK [22], where the Tersoff potential was adopted. Other approaches such as

thigh-binding models have also been used in combination with molecular dynamics

to study polycrystalline h-BN for different grain sizes reporting values close to 600

W/mK for the infinite limit [23]. More recently, Capellotti et al. have solved

the linearized BTE equation using parameters obtained from Density Functional

Perturbation Theory (DFPT) for SL h-BN reporting 1050 W/mK as the value of the bulk

thermal conductivity [24]. This result is the most accurate value from first principles

calculations to date since it is based on the exact solution of the BTE equation where

phonon frequencies, phonon lifetimes, and scattering rates have been computed fully ab

initio by DFPT. Concerning the thermal properties in nanorribons, the values reported

so far are significantly lower than the 2D infinite monolayer counterpart. Moreover,

strong dependence as a function of the width and the length of the ribbon has also

been observed [25, 26]. Although it was reported that the thermal conductivities for

zigzag and armchair oriented nanoribbons are different [27, 21, 25] suggesting a possible

anisotropy, the only work that has studied systematically the thermal conductivity as

a function of the orientation of the ribbon was done by Y. -C. Chen et al. [26] by Non

Equilibrium Molecular Dynamics (NEMD) using Tersoff-type potentials. They have

reported anisotropy due to the boundary scattering in the free edges of the ribbon in a

similar case to the graphene nanostructure [28].

In this work, the Approach to Equilibrium Molecular Dynamics (AEMD) [29, 30, 31]

method was used in combination to density functional theory (DFT) as implemented
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in Siesta [32] to elucidate from first-principles the possible anisotropy in SL h-BN.

The AEMD approach was used since it has demonstrated that its computational cost

is reduced compared to other MD techniques [29, 30] and, therefore, it optimally

matches the high computational demands posed by DFT calculations. Siesta shows

a comparatively high numerical efficiency due to the description of the electronic

wavefunctions by means of strictly localized basis sets. By combining AEMD with

Siesta we have reached an unprecedented computational efficiency which the possibility

to determine accurately the thermal conductivity in h-BN from ab-initio MD.

2. Theory and computational setup

The evaluation of the thermal conductivity was done using the Approach to Equilibrium

Molecular Dynamics (AEMD) methodology as described in [29, 30]. This approach

evaluates the thermal conductivity from the temperature transient regime using the

exact solution of the heat transport equation for an initial step-like temperature

profile. The system is initially decomposed in two different regions (subsystems 1

and 2) characterized by average temperatures 〈T1〉 and 〈T2〉, respectively. The average

temperature at given time t is defined as 〈T 〉 = 1
L

∫ L
0
T (z, t)dz being L the subsystem

length. From the solution of the heat equation for the above initial condition, the time

evolution of the average temperature difference is expected to have the form

∆T (t) = 〈T1〉 − 〈T2〉 =
∞∑
n=1

Cne
−α2

nκ̄t (1)

where

Cn = 8(T1 − T2)
[cos(αnLz/2)− 1]2

α2
nL

2
z

(2)

being αn = 2πn/Lz, Lz the length of the total system and n an integer number. From

the thermal diffusivity κ̄, the thermal conductivity κ can be obtained as

κ =
κ̄Cv
V

(3)

where V is the total system volume and Cv is the heat capacity. The quasi harmonic

approximation [33] was used to evaluate the heat capacity Cv needed for the calculation

of the thermal conductivity (see eq. 3). Cv at given temperature T can be directly

calculated from the phonon density of states (DOS) g(ν) using the following expression

[34]

CQHA
v = rNkB

∫ ∞
0

dνg(ν)W (hν/kBT ) (4)

with the weighing factor W (x) = x2ex/(ex − 1)2. h is the Planck constant, kB is the

Boltzmann constant, ν is the frequency of the phonons and r and N are the number

of degrees of freedom and the number of atoms in the unit cell, respectively. From the

heat capacity, the Debye temperature ΘD can be also obtained by fitting CQHA
v (T ) to
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the expression for the heat capacity under the Debye approximation for 2D materials

[35]

CDebye
v = 6NkB

( T

ΘD

)2
∫ Θ/T

0

x3ex

(ex − 1)2
dx. (5)

This magnitude is a measurement of the temperature above which basically all modes

are excited and below which some modes are instead frozen out.

All the simulations were performed using the ab-initio Siesta code [32, 36] taking

advantage of its molecular dynamics package in combination to DFT for the forces

determination (see Supporting Information for the code implementation [37]). Within

this combination, the time dependent positions and velocities of the atoms are described

by fully ab-initio interatomic forces in contrast to force fields methods based on empirical

potential approaches.

The DFT-Siesta calculations were performed using norm-conserving Troullier-

Martins [38] pseudopotentials with nonlinear core corrections within the local density

approximation (LDA) with a Ceperley-Alder [39] exchange-correlation potential as

parametrized by Perdew-Zunger [40]. A non-optimized Siesta single-ζ basis set [41]

was used to describe the valence electrons, and a mesh cutoff of 800 Ry for the real-

space grid [32]. The h-BN unit cell and the atomic positions were relaxed using conjugate

gradients until the forces acting on each atom were smaller than 0.04 eV/Å. The first

Brillouin zone (FBZ) was sampled by a 8×8×1 k-points mesh. The convergence criteria

for the electron density matrix was chosen as 10−4 between two consecutive steps. In

order to properly describe a single layer h-BN, a large spacing of 10 Å of vacuum was

added in order to prevent interaction between periodic images. The optimized lattice

constant and the B-N bond distance were a=2.511 Å and d=1.450 Å, respectively, in

good agreement to the values reported on [42, 43, 44, 45]. Phonon calculations were

done using finite differences: we obtain the dynamical matrix from the atomic forces in

a large enough supercell, caused by atomic displacements of the atoms in the unit cell

of 0.04 Bohr from their equilibrium positions.

To perform the AEMD simulations, the simulation box was divided in two equal

subsystems containing the same number of atoms and dimensions. Starting from

a random Maxwell-Boltzmann velocity distribution, the initial step-like temperature

profile was created during the equilibration run. At this stage, the subsystems were

coupled to external Berendsen thermostats which rescale appropriately the atomic

velocities of each subsystem in order to reach the target temperatures 〈T1〉 = 400 K

and 〈T2〉 = 200 K, respectively. The average temperatures were obtained from the

kinetic energy of the atoms in each subsystem. The number of equilibration steps was

500 and the equations of motion were integrated by the Velocity Verlet algorithm using

2 fs time step. Previous tests provided evidence that this number of steps is enough to

reach the target temperatures and the calculated thermal conductivity is independent

of the number of steps in this equilibration stage. Once the initial temperature profile

was created with ∆T (0) = 200 K, the system was aged by a microcanonical run for

which the time dependence of the temperature difference (eq. 1) was monitored. Each
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simulation was repeated 5 times starting from different initial distributions of the atomic

velocities and, therefore, all calculated thermal conductivity values have been obtained

as a configurational average. Finally, the number of fitting exponentials was set to

n = 20 in eq. 1 and the thickness in the perpendicular direction is chosen as the

experimental one of the corresponding three-dimensional (3D) material 3.306 Å as is

usually done in these simulations [24, 26].

Figure 1. Simulated h-BN samples for three orientations. Eight orientations were

studied with different chiral angles (from the zigzag to the armchair).

In order to assess any anisotropy in thermal transport, our simulation boxes are

build from a 2D single layer, by defining rectangular samples of material with a given

orientation angle σ (measured with reference to the zigzag direction), and with lengths

Lz and Ly in the directions parallel and perpendicular to transport, respectively, as

indicated in Fig. 1. The number of atoms in the direction of transport was made

as large as possible, while the length in the perpendicular direction was reduced to a

minimum. Periodic boundary conditions are used in the MD runs in which we simulate

the 2D single layer. 2D samples were used to determine the thermal conductivity along

the zigzag and armchair directions as a function of the system length. The width of the

zigzag samples were Ly = 0.869 nm while 10 nm ≤ Lz ≤ 100 nm. The corresponding

number of atoms in the systems varied from 320 to 3200. Similar numbers were obtained

for the armchair case but the width of the samples was Ly = 1.004 nm. Eight different

orientation were studied from the zigzag (ZZ) configuration (σ = 0◦), to the armchair

(AC) configuration (σ = 30◦), with system sizes around Lz ≈ 20 nm and Ly ≈ 0.86 nm

(see Supporting Information section for further system details [37]).

Concerning the simulation of finite-width structures, the zigzag and the armchair

BN nanoribbons (ZZBNNR and ACBNNR) were created starting from the previous

systems including extra layer of vacuum (10 Å) in the y-direction. Since our calculations

are based on the DFT approach, the free dangling bonds have to be correctly passivated.
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Thus, the edges of the ribbons were passivated including H atoms in order to maintain

the appropriate atomic coordination. The H atomic mass was increased to a comparable

value as the N and B to perform the integration of the equations of motion using the

previous defined time step.

Figure 2. (a) Calculated phonon dispersion relation of SL h-BN in the FBZ along the

high-symmetry directions (solid line). The symbols correspond to the phonon modes

calculated within DFTP using PWSCF software extracted from [42]. (b) Phonon

density of states (DOS) for the 2D BN honeycomb structure.

3. Results and discussion

3.1. Phonon and thermal properties

Fig. 2(a) shows the calculated phonon dispersion curves of SL h-BN along symmetry

lines in the first Brillouin zone (FBZ), and Fig. 2(b) the corresponding phonon density

of states (DOS). This figure also shows a direct comparison between the present phonon

bands obtained by finite differences from Siesta using a single-ζ basis set (solid line)

and those (symbols) calculated within density functional perturbation theory (DFPT)

using plane-wave methods as implemented in the PWSCF code [46] taken from ref. [42].

A rather good agreement is obtained specially for the flexural acoustic (ZA), longitudinal

acoustic (LA) and transverse acoustic (TA) modes which are the principal phonon modes

that contribute to the thermal transport. This agreement stands for the accuracy and

reliability of the present computational setup. Similar to other 2D materials [47, 48], the

LA and the TA branches are linear near the Γ point, while the ZA branch is quadratic.

Although the frequencies of the longitudinal and transverse optical branches (LO and

TO) are slightly overestimated, these phonons do not contribute significantly to the

thermal transport [49]. These small discrepancies, due to the use of a minimal basis set

(single-ζ, selected to minimize the very high computational demands of the DFT-AEMD

simulations) are expected to have a minor effect on the computed thermal transport

properties, while the computational cost is greatly reduced.
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Figure 3. Calculated Cv of SL h-BN in the harmonic approximation (solid line). The

dashed line corresponds to the fit using the Debye approximation in order to evaluate

ΘD.

Fig. 3 shows the calculated CQHA
v and the fitting to the Debye model (eq. 5). This

model is used to fit the Cv in the low temperature range, and the calculated Debye

temperature ΘD lies between 1150 K and 1690 K, depending on the upper temperature

limit of the fit. The discrepancies in the fit at low temperature arise from the assumption

that, in the Debye model, the 3 acoustic bands are well described by a linear dispersion

relation with a common group velocity vs. This assumption is not true for the ZA

phonon band which has a parabolic dispersion and dominates the Cv behaviour at low

temperatures. The obtained Debye temperature is higher than the reported one for bulk

h-BN which is around 1500 K [34]. On the other hand, the Debye temperature ΘD can

also be calculated from the average sound velocity vs as [50]

ΘD =
~vs
kB

(4πN

S

) 1
2

(6)

where ~ is the reduced Planck constant, N is the number of atoms in the unit cell, S is

the area of the unit cell and the avearge maximum sound velocity is given by

vs =
[1

3

( 1

v2
l

+
1

v2
t

+
1

v2
z

)]− 1
2

(7)

which accounts the group velocities of the longitudinal (vl), transverse (vt) and out

of plane (vz) acoustic modes which are taken from Fig. 2. The calculated Debye

temperature using eq. 6 was ΘD = 1030 K which is close to the lowest value calculated

directly from the Debye model (1150 K) reflecting that the Debye model is only valid

in the low temperature limit. This result can be compared to the Debye temperature

of other 2D materials such as graphene, silicene and germanene (2539 K, 680 K and
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352 K, respectively) [50, 51]. Higher Debye temperatures mean larger phonon velocities

and increased acoustic phonon frequencies which suppress phonon-phonon scattering by

decreasing phonon populations [52] reflecting higher thermal conductivity. In all 2D

materials, the thermal conductivity decreases monotonically with decreasing ΘD. Thus,

being the conductivity of graphene in the range from 1000 W/mK to 8000 W/mK [53]

and the conductivity of silicene κ ≈ 28 W/mK [54, 55, 56] and in view of the value

of ΘD for SL h-BN, its thermal conductivity is expected to lie in the range between

graphene and silicene.

Figure 4. Angular dependence of the thermal conductivity for system lengths around

20 nm. σ = 0◦ corresponds to the zigzag direction and σ = 30◦ to the armchair one.

The colored areas represent the values of κ for small variations of Lz for the zigzag

(red area) and armchair (green area) orientations.

3.2. Anisotropy of the thermal conductivity in samples of finite length

We now focus on the possible anisotropy of the thermal conductivity. We first center

our study on 2D layers of finite length, which may represent the case of h-BN layers

in nanoscale devices. In order to perform a feasible systematic study along several

transport orientations, we build samples with different orientations and similar sizes,

and compute the thermal conductivity of each of them. Although, due to geometrical

constraints, it is not possible to build simulation cells with the exact same lengths for

the different orientations, in all cases we have chosen cell sizes close to Ly ≈ 1 nm and

Lz ≈ 20 nm (see the Supporting Information for further system details). Fig. 4 shows

the calculated thermal conductivity for different orientations given by 0◦ ≤ σ ≤ 30◦,

i.e. ranging from zigzag to armchair. We find that there is a sizable dependence of

the conductivity with the transport direction. The maximum thermal conductivity is
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found for the armchair direction, whereas the minimum one corresponds to the zigzag

and the 15◦ chiral angles. Moreover, there exists a local maximum around 7◦. In

order to ensure that the obtained anisotropy corresponds to intrinsic properties of the

SL h-BN and that the slight differences in the system sizes do not affect the observed

trend, the two extremal chiral angles (zigzag and armchair) were simulated using the

shortest and largest length (Lz) of the all orientated samples. This is reflected in two

colored regions in Fig. 4 corresponding to the zigzag (red area) and the armchair (green

area). Since both regions do not overlap, we can draw the conclusion that thermal

anisotropy is present in finite h-BN samples for the sizes considered (around 20 nm). In

particular, we obtain a ratio of the conductivities in the armchair and zigzag directions

of κAC/κZZ ≈ 1.6.

It is interesting to contrast the results for the finite size 2D samples described above

with those of h-BN nanoribbons (BNNRs) where edge effects (edges are parallel to the

transport direction) are expected to affect the heat flux. Y. -C. Chen et al. [26] reported

on the anisotropy of thermal conductivity of BNNRs along various transport directions

by Non-Equilibrium Molecular Dynamics (NEMD) using a Tersoff-type potential. They

observed a maximum value of thermal conductivity for the zigzag σ = 0◦, two local

maxima in the armchair σ = 30◦ and in the σ = 19◦ nanoribbons, and minima of

conductivity for the 13◦ and 23◦ chiral angles. Their thermal conductivity behavior

was explained solving the linearized Boltzman transport equation (BTE) under the

relaxation time approximation including an extra scattering term caused from the free

lateral edges (parallel to transport direction). This scattering term depends on the edge

specularity which is a parameter related to the edge roughness of the ribbons. From their

results, the ratio between the armchair and the zigzag directions is κNRAC /κ
NR
ZZ ≈ 0.68.

This is further supported by the results from other authors, who have reported that, for

the nanoribbon case, the most conductive transport direction is the zigzag one obtaining

values around κNRAC /κ
NR
ZZ ≈ 0.6− 0.7 [27, 21, 25].

Our results for the anisotropy of 2D samples with finite length are not affected

by any boundary scattering, as in the case of the nanoribbons, since 2D samples are

simulated in periodic boundary conditions. Therefore, we conclude that Fig. 4 provides

evidence of an intrinsic anisotropy in thermal transport for finite samples, not related

to any boundary scattering physics. In order to further confirm this conclusion and to

perform a direct comparison with the results for BNNRs from the literature, we have

calculated the thermal conductivity of zigzag and armchair BN nanoribbons using our

AEMD-Siesta methodology. From the previous systems for the study of the thermal

transport along the zigzag and armchair transport directions, the nanoribbons were

created adding extra layer of vacuum in the Ly direction and including H atoms to

pasivate the free edge dangling bonds (see Supporting Information for system details).

The calculated thermal conductivity was κNRZZ = 11.47±0.91 W/m K for the zigzag and

κNRAC = 8.63± 0.85 W/m K for the armchair nanoribbons, respectively. These values for

the nanoribbon structures are lower than the corresponding 2D counterpart, implying

the existence of extra scattering channels not present in the bulk samples, associated



10

with the ribbon edges. Moreover, for the nanoribbon case, the zigzag direction has

larger thermal conductivity than the armchair. The ratio is κNRAC /κ
NR
ZZ = 0.75± 0.10 in

good agreement to all the previous reported results and far from the value obtained for

the fully periodic case. We conclude that in the nanoribbon case, the role played by

boundaries is twofold, namely: (i) they reduce the thermal conductivity with respect to

the bulklike samples (because of boundary scattering); (ii) they change completely the

anisotropy behaviour in terms of the κAC/κZZ ratio.

Figure 5. 1/κ vs. 1/Lz for the zigzag (a) and for the armchair (b) transport

direction. Each symbol corresponds to the average of 5 independent simulations, with

the error bar showing the standard deviation. The full line is the fit to eq. 8.

3.3. Bulklike thermal conductivity

We are now interested in the bulk-like behaviour of the thermal conductivity for the SL

h-BN samples, i.e., the limit for large sample sizes. To obtain it, AEMD simulations

must be repeated for samples with increasing length Lz, and extrapolate to the limit of

infinite Lz. We use a second order Taylor expansion for the extrapolation [30, 31]:

1

κ
=

1

κ∞
+
A

Lz
+
B

L2
z

(8)

where κ∞ is the inverse of the thermal conductivity at the bulk limit Lz → ∞, and

A and B are the coefficients of the linear and quadratic terms, respectively. 1/κ∞, A

and B are obtained from the fitting of the computed values of κ for different lengths

Lz to eq. 8. Fig. 5 shows the corresponding 1/κ vs. 1/Lz plots and the fitted curves

to the simulated data for the zigzag and the armchair orientations. The bulk thermal

conductivity values are κZZ∞ = 1003± 150 W/mK for the zigzag and κAC∞ = 1160± 254
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W/mK for the armchair orientations. The errors of the fitted κ∞ reflect both the

dispersion around the functional form assumed for the fitting curve, and the error bars

associated for each point. These values of the bulk thermal conductivity agree well

with the most accurate one of 1050 W/mK obtained by Capellotti et al. [24] solving

the linearized BTE equation using DFPT data for h-BN. This value is very close to

the average over both directions (κZZ∞ + κAC∞ )/2 obtained in this work. In comparison

to other two-dimensional materials with the same honeycomb atomic structure such as

silicene or graphene, the thermal conductivity of SL h-BN is one order of magnitude

larger than that of silicene (28 W/mK) [54, 55, 56] and much lower than that of graphene

(1000-8000 W/mK) [53], which is the most conductive material. It is interesting to note

that the thermal conductivity of the SL h-BN is larger than the bilayer (∼ 484 W/mK)

[18] and bulk (400 W/mK) [19] counterparts.

From the extrapolated value of 1/κ∞ for both zigzag and armchair directions, we

observe a noticeable but small anisotropy in the bulk limit However, the difference is

much smaller than that obtained for finite samples, and for the nanoribbon structures.

We, therefore, conclude that, for large area SL h-BN, thermal conduction is nearly

isotropic, whereas small samples do present a marked anisotropy. In order to understand

this finding, we have analyzed the average square group velocities of the acoustic

branches along the high symmetry directions. From the solution of the BTE under

the relaxation time approximation, the thermal conductivity for phonons with a given

frequency ω can be written as [57]

κω,α =
1

kBT 2NV
f0(1 + f0)(~ω)2

∑
λ

v2
λ,ατλδ(ω − ωλ) (9)

where N is the number of points of the k-sampling of the Brillouin zone, V is the volume

of the unit cell, f0 is the Bose-Einstein distribution function, τλ is the relaxation time per

phonon mode λ and vλ,α is the group velocity along the α direction. Since κω depends

on the square of velocity v2, a detailed study of v2 along the armchair (Γ−M k-point

bandpath) and zigzag (Γ−K k-point bandpath) directions can reveal the origin of the

anisotropy. The average square group velocity in one direction α was calculated with

the following expression [57]

v2
α(ω) =

∑
λ

v2
λ,αδ(ω − ωλ)/

∑
λ

δ(ω − ωλ). (10)

The δ function was approximated with a Gaussian one using adaptive broadening

parameter depending on the mode group velocity [58].

Fig. 6 shows the average square group velocity along the high symmetry lines

calculated from the phonon dispersion curve presented before (see Fig. 2). Only the

acoustic phonon branches (ZA, LA and TA) were used for this calculation since, in

2D materials, the thermal transport is practically mediated by acoustic phonons. It

is clearly shown that the main differences are in the range of high phonon frequencies

whereas for low frequencies, the square group velocity is quite similar. We remark that in

2D materials, the low frequency acoustic phonons play the dominant role in the thermal
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Figure 6. The average square group velocities of the acoustic phonon branches along

the different directions: Γ−M for armchair and Γ−K for zigzag, respectively.

conductivity. Thus, when the length of the system increases, more low frequencies (long

wavelength) phonons are excited and contribute to the thermal conduction [59]. In view

of the above and taking into account the calculated v2 behavior, for shorter systems

the conductivity is mediated by phonons with high frequencies which have different

group velocities, leading to anisotropic transport behavior along the zigzag and the

armchair directions. However, when the length of the system increases, phonons with

lower frequencies are excited which have comparable square group velocities along the

two directions resulting in a similar thermal conductivity. This qualitative argument is

supported by the fact that the value of v2 in the armchair direction is greater than in

the zigzag one in the high frequency range, leading to a higher thermal conductivity in

that direction for short samples, as discussed above.

4. Conclusions

The thermal transport properties of single-layer hexagonal boron nitride were studied

using AEMD in combination to DFT. The thermal conductivity along the zigzag and

armchair directions as a function of the sample length was presented determining that

the value of the bulk κ is around 1050 W/m K for both directions in agreement to

recent publications. Moreover, in the bulk limit case, the results point out that the

anisotropy in the thermal conductivity is small. A systematic study of the thermal

conductivity along several orientations ranging from 0◦ to 30◦ rotation angle was done

for finite samples. From the studied samples (20 nm length), the maximum conductivity

is obtained for the armchair direction (30◦) as well as a local maximum appears at 7◦
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whereas the zigzag (0◦) one shows lower conductivity. The observed length dependent

anisotropy in the SL h-BN is explained with the average square group velocities as

follows: for shorter systems the phonons that contribute to the thermal conductivity

are the ones with larger frequencies being v2 quite different for the zigzag and armchair

directions leading to anisotropy in the thermal conductivity. However, as the length of

the system increases, more phonons with lower frequencies contribute to κ whose have

comparable square group velocities resulting in a similar thermal conductivity.
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Supporting Information

Code implementation

Each AEMD simulation can be divided in two different parts: first, the temperature

step-like profile has to be created. For this purpose, the total system is divided in two

subsystems and coupled to external baths to reach the desired temperatures (canonical

run). Once they are equilibrated to the initial temperature as it is shown in Fig. S. 1, a

microcanonical run is done and the average temperature of each subsystem is monitored

in the transient state.

In order to run the AEMD simulations, a modified Siesta version was used. Siesta

is a code to perform efficient electronic structure calculations and ab inito molecular

dynamics simulations within the DFT framework. It is based on strictly localized basis

sets to describe the electron density. A very important feature of the code is that its

accuracy and cost can be tuned in a wide range, from quick exploratory calculations

to highly accurate simulations matching the quality of other approaches, such as plane-

wave and all-electron methods.

Siesta has several options for MD simulations applying external constrains:

temperature or/and pressure. For our purposes, the options to perform the canonical

run at given target temperature are: Nosé MD with temperature controlled by a

Nosé thermostat, or Anneal MD based on Berendsen thermostat. All the parameters

associated to each thermostat can be easily tuned. Finally, for the microcanonical run,

the velocity Verlet algorithm is also implemented in Siesta.

Basically, two main changes were applied to Siesta in the MD subroutines: (1)

split the total system in two subsystems and (2), define two target temperatures (for

the canonical run) and perform the kinetic energy summation for all atoms that belong

to each subsystem (i.e. all the loop atoms inside these subroutines were split in two
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Figure S. 1. (Upper figure) System decomposition and preparation at given

temperatures to create the step-like temperature profile (red and blue areas are the

hottest and the coldest subsystems). A side view of the single layer BN is also reported,

showing its thermal rippling. In all the simulations, the subsystems contain equal

number of atoms. (Lower figure) Step-like temperature profile along the length of the

system (Lz). Note that this structure is repeated in the space using periodic boundary

conditions (PBC).

different loops accounting for the atoms that compose the subsystems). Since the code

is written in a modular form, the force calculation core (DFT self-consistent loop and

energy derivatives) was not changed. Only the annealing, the Verlet and the initial

maxwell Boltzmann velocity generator subroutines were changed to include the two

subsystems. Concerning the annealing subroutine based on the Berendsen thermostat,

the velocities are usually rescaled according to the scale factor

λ = [1 +
δt

τT
(
T

T0

− 1)]
1
2 (11)

where T is the target temperature, δt is the integration time, τT is the rise time of

the thermostat and T0 is the instantaneous temperature. However, the pure velocity

reescaling scheme is obtained if δt = τT . In our simulations, the rise time constant was

set equal to the time integration step reaching to the target temperature in only one

MD step.

System definitions

The different systems under study were created starting from the relaxed unit cell.

This unit cell was replicated several times along the y-z direction in order to create

the BN supercell. An extra layer of vacuum was added in the direction normal to the

plane in order to avoid interactions between consecutive h-BN layers. Since Siesta

uses a localized set of orbitals which are non-zero up to a determined radius cut-off,

the distance between layer images was set to twice the maximum cut-off radius of the

orbitals.

Concerning the study of the thermal conductivity as a function of the length of
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the sample, the width of the zigzag systems were Ly = 0.869 nm and Lz ranges from

≈ 10 nm to ≈ 100 nm. The number of atoms in the systems varied from 320 to 3200.

Similar numbers were obtained for the armchair case but the width of the sample was

Ly = 1.004 nm.

For the anisotropy study in finite samples, the system sizes were around Lz ≈ 20

nm and Ly = 0.86 nm for length and width, respectively. The sizes as well as the

number of atoms of each system are presented in Table S. 1.

Angle Number of atoms Ly (nm) Lz (nm)

ZZ (0◦) 640 0.869 20.088

7◦ 836 1.095 20.853

10◦ 496 0.664 20.367

15◦ 656 0.905 19.784

19◦ 840 1.151 19.930

21◦ 992 1.398 19.972

28◦ 816 1.004 22.194

AC(30◦) 736 1.004 20.005

Table S. 1. Angle, number of atoms, length (Lz) and width (Ly) of the samples

used in the systematic study of the thermal conductivity along different transport

orientations.

Figure S. 2. Fragment of the armchair BNNR (a) and zigzag BNNR lattice structure

(b). The color atom legend corresponds to: red B, green N and blue H, respectively.

The two studied nanoribbons were created from the previous structures used in the

anisotropy study (see the scheme shown in Fig. S. 2). Basically, a layer of vacuum was

added in the y-direction (following the same prescription as before to avoid interaction

between consecutive replicas). Moreover, H atoms were included in the lateral edges
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of the ribbon to passivate the free dangling bonds. Finally, the atomic mass of the H

atoms was increased to a comparable value of the B and N mass in order to use the

same integration time step to solve the equation of motions.

Figure S. 3. Calculated phonon group velocities of the acoustic branches (ZA, LA

and TA) along the Γ − K and Γ −M directions from the h-BN phonon dispersion

curve.

Group velocities

Fig. S. 3 shows the calculated phonon group velocities v = dω(q)/dq of the acoustic

branches (ZA, LA and TA) along the Γ−K (zigzag) and Γ−M (armchair) directions.

The high obtained values of group velocity around the Brillouin zone center (Γ point)

can be considered as one of the main reason for the high thermal conductivity of the

h-BN. The obtained group velocities are vLA = 8622 m/s for LA and vTA = 14336 m/s

for TA modes, respectively.
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